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ADVANCED MATH

OBJECTIVES

1. Given a series of numbers, you will be able to multi-
ply and divide them using logarithms with 80% accuracy.

2. Given a 2 x 2 mat4ix, you will be able to:

1. transpose it

2. find its determinant

3. find its inverse, if it has one

4. multiply it times another 2 x 2 matrix.

Given a test covering the above material, you will be

able to complete 70% of it accurately.



1

Rationale:

Scientists and engineers at times find themselves

presented with a problem such as the one below.

x = Fg7 Find x.

The easiest way to do this problem without a sophisticated

calculator, is by using logArithms.

This package offers a review of working with fractional

exponents and shows. you how you can invent logarithms, and

then use them.

Behavioral objective:

Given a series of numbe 3, you will be able to multi-

ply and divide them using logarithms with 80% accuracy.

Pre-test:

Simplify by using logs. (no calculator or computer)

(.921)7(762)(1.57)

(mg) (row)



Information Sources:

Textbook - Modern Algebra and Trig. Dolciani

Read Data Brief # 1

Read Data Brief # 2

Read Data Brief # 3

Read Data Brief # 4

Read Data Brief # 5

"Exponent Arithmetic"

"Linear graph Paper"

"Semi-log Graph Paper"

"Inventing Logs"

"Computations with Logs"

In your text, do written exercises p. 354, #1 -16, all



Data Brief f 1

Operating with exponents.

2 x 2 x 2 2C 2= 2"

3 x 3 = 32

5 = 51

The exponent tells how many times the base is used as a factor.

a(a) (a) (a) (a) (a) = a6

bxb. . . x b = bn when there are n factors.

C2 is read as "c squared, or c to the second power"

d3 is read as "d cubed, or d to the third power"

a4
is read as "a to the fourth'

0 is read as "b to the ninth"

Consider!! 23 22 = (2.2.2)(2-2) = 2.2-2-2-2 = 25

3 37 = (3.3.3.3)(3.3.3.3.3.3.3) = 3.3.3.3.3.3.3.3.3-3-3

= 311

In General am.an am+n



Consider11.

In General

2° = 1

2
s 2.2.2.2.2

-
2 2.2.2

a
m

a
m-n

a

2 2 22 = 4 = 22
2 2

789 - 1056
m

=
a° = 12 =

1056 21
am-m

2 789 a

Consider!!

But

789° = 1 1056° = 1

a
7 - a2

-7 = a-5

a2 a.a 1

a7- a.a.a.a.a.a-a as

In general a -n
1

a

Consider!! (56)2= (56) (56) = 56

In General (a ) n
=

MA

Example: (14. i

k



Consider!!! a a.,2
I

P42

This means some number times itself equals 9. Therefore -
1

z-

In General'

Ge"

z

Consider111 5'

In General

4 4 7
0

SI;

OM. (5)4 VT:
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Data Brief * 2

We review briefly what the graph of a function looks like.

In graphing the function -y = 2x + 3, we obtain a graph

wh.Lca Jocks like:

Nag
wpm

f3
x

We observe that when x is the value 0, y is the value 3.

This is written as (0,3)

When x = 2, y = 7, and the point (2,7) is plotted.

When x = 1.25, y = 5.5 ( y = 2(1.25) + 3) This value for y

is easier to calculate from the equation than it is to look

at the graph, and try to calculate it.

But sometimes it is easier to "guess" at a value on

a graph than it is to calculate it!!



Data Brief # 3

S'appose we wish to multiply 1000 and 100. The product is

100,000. But lets try to multiply by adding (exponents).

1000 = 103

100 = 102 105 x 102 = 102 3 = 105

MATHEMATICIANS ARE LAZY 111111

Isn't it easier to add 2 + 3 instead of multiplying 1000 x 100.

How about 2000 x 100

3000 x 600,000,000 = 3

2 x 103 x 102

x -103 x 6 x 108 =

=

= 2 x 105 = 200000

18 x 1011

1800000000000

How: 20 = 2 x 10

200 = 2 x 102

In the above two examples, you can't simplify any further,

and you can't find out the actual value of 2 x 102 because you

don't know how to express 2 as a power of 10.

Let 2 = 10x then 2 x 102= 10x 102 = 10x
to

IP 2x
2 x 2 -would be 10

Thus extending this system for all numbers besides 2, we could

multiply by adding exponentsIIIII



We will now attempt to find the powers of 10 for such numbers

as 2, 3, 5, 6, etc., so that we can use exponents to multiply

any two numbers together.

For example:

2 x 6 = 12

We will rewrite this problem as

2 x 6 = 10h x 10Y = 101141

where 10h = 2 and 101' = 6

Thus we can add the exponents h and y in stead of multi-

plying the numbers 2 and 6.

_4.4. Keep in mind that this is the goal of this package: to

add instead of multiply.

At this point you should ask the teacher for a demonstration

on using semi-jog graph paper.

.

Data Brief # 4

2= 10x

We will now try to approximate the-above value of x

by numerical methods.

10° = 1

101 = 10

There is a number x such that 10x = 2

10° = 1

10x = 2

101 = 10

Thus x is greater than 0 and-less than 1.



We now will try to find 2 as 10 to some power.

2 =4 22 =4

25 = 8

24 = 16

25 = 32

26 = 64

27 = 128

28 = 256

23= = 512

210 = 1024

Now 1024 = 1000(1:024) = 103(1.024)

But 1.024 Ot 1 (The waving equals sign means approximately.)

hence
2" e"- 103

But
2" =(21) 10 and 10.3 = (10.3) lo

Thus
(21)10 (104) 10

Or
2 'At 104

2(2) will become 10(10.3) = 10-6

Thus multiplication becomes the addition of exponents!!



Data Brief # 5
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Data Brief * 6

The teacher will demonstrate the use of the log tables in

the back of your textbook.



Activity # 1

C-c"Otke -Wye- Ct)\6619 Pr'41\e''"%

1, 53 Cs)'

2 X3 4=

3 b b b .1) 47. b 4-

Lf, 3. 3 3- 3 c

5. - a c-c.. et x 4( 41 *

C.

3x 4

9x3

a5
as (a 00)

g al \:7,3 ,:.1-.4

/4 ( 3)-1

In the textbook p. 335 1 - 39, odd problems and 0 40

p. 337 1 - 16 all II
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Activity 1 2

THIS IS A REVIEW OF WHAT THE GRAPH OF A FUNCTION LOOKS LIKE, IF YOU

GRAPH Y = 2x + 3, YOU GET A GRAP WHICH LOOKS LIKE THE FOLLOWING:

Y
S"
* -

-4 -3 --/ I 3 Li 5
--t .

You CAN OBSERVE THAT WHEN -X IS 0, Y IS 3, AND WHEN X IS 2, Y IS 7.

1. BY READING FROM THE GRAPH, WHAT VALUE DOES Y HAVE WHEN X w 1?

2. Now CALCULATE THE VALUE OF Y USING THE FORMULA -Y w 2x + 3

WHEN X 1= 1.

3. WHAT VALUE OF X CAUSES Y TO TAKE ON THE VALUE OF 0?



SUPPOSE WE NOW WISH TO GRAPH Y = 23(s. PICK A VALUE FOR-X AS LISTED

IN THE TABLE BELOW AND DETERMINE THE CORRESPONDING VALUE FOR Y.

VALUE OF VALUE OF
X

6

5

4

3

2

1

0

1

-2

-3

4

5

PLOT THE POINTS YOU OBTAIN IN THIS TABLE ON A GRAPH, VSE TWO DIFFERENT

SHEETS OF GRAPH PAPER, ONE FOR THE VALUES OF X FROM I TO 6s AND THE

OTHER FOr THE VALUES OF X FROM -5 TO 1.



7

NOW OBSERVE YOUR GRAPH "ND ANSWER THE FOLLOWING QUESTIONS.

1. THE VALUE OF Y FOR Y = 2X IS ALWAYS POSITIVE TRUE F,

2, AS X INCREASES IN VALUE, Y ALSO INCREASES IN VALUE TRUE

3, WITH A CAREFULLY DRAWN GRAPH, VALUES OF Y AND X XAN BE

READ APPROXIMATELY TO 2 OR 3 DECIMAL PLACES TRUE F.3._ .

4, USING YOUR GRAPH, WHAT IS THE VALUE OF Y FOR X 21 2.5

USING YOUR GRAPH, WHAT IS THE VALUE OF Y FOR X 1.5?

6, ALSO FIND THE VALUE OF Y FOR X.= .5

7. WHEN X = 3, WHAT IS THE VALUE FOR Y?

PROBLEMS 4 THRU 7 USE A PROCESS CALLED INTERPOLATION.
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Activity 1 3

Graph the function y = 10
x

using the table below

after you have filled it in.

Value of

x

Value of

10x

Value of

y

5

4

3 103 1000

2

1

0

-1

-2

-3
1

Graph this function using 3-cycle semi-log paper. Only

use the values of x from -1 to 2.

Using your graph, you will obtain the following values;

10*4 =

10'5

10*8 =



Activity i 4

69 = 10,077,696

69 ti 107

Remember 2 x 3 = 6 and you already know 2 =

N 7--- 10x

N x

2 .3

3

4

5

6

7

8

9

10 1

More hints: 2 x 5= 10, 7 x 7 50

Adding exponents from the above table, how close do you get

to the actual value for

5 x 5 x 4



Activity # 5

Graph N = 10
x

on 1 cycle semi-log paper, x mg 0 to 1.

Make each tenth equal to 5 divisions across. Then fill in the

tables below

N I x

3
4
5
6
7
8
9
10
11
12
13
14
15

17
18
19
20
21
22
23
24
25
6

27
28
29
30

N x

01=11,

.1

.2

.3

.4

.5

.6

.7

.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.1
1.9
2.0



In the :ollowing problems use the tables on the prisceeding

page. You may not use the calculator except to check your

work. Use the powers of ten as in the data brief.

/0 .7 /0/
2

)e tale.
10

L
10Q. Li X /0

cr .2,7 7.1

I. I i

10 Iry

39.8 x 126 x 25.1 x 1.58

501 x 3.16

794 x 15.8 x 1.26 x 31.6

63.1 x 251



Your method is what will determine your grade.
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Rationale:

Engineering statics problems use determinants. De-

terninants are part of Matrix algebra.

This package develops some of the basic ideas of

Matrix algebra. It is hoped that after completing this

package, you will see the necessity for defining the laws

of an algebraic system.

Behavioral objectives:

Given a 2 x 2 matrix, you will be able to

transpose it

2. find its determinant

3. Find its inverse, if it has one

4, multiply it times another 2 x 2 matrix.

Given a test covering the above material, you will be

able to complete 70% of it correctly.

Pre-test:

A
1 3

4 8

Find , A2 , 6(A)



Information Sources:

Read Data Brief 4 1

Read Data Brief 4 2

Read Data Brief 4 3

Read Data Brief 4 4

Read Data Brief 4 S

Read Data Brief 4 6

"Matrix Operations"

"Multiplication of Matrices"

"The Identity Matrix"

"Inverse Matrices"

"Determinants"

"Sum Notation"



Data Brief I 1

As you have studied more and more sophisticated math -
emetics, you have had occasion to use more and more sophisticated
kinds of numbers. You began with the set of counting numbers,
1, 2, 3, . . .. Then in oreder to make subtractions like
3 - 7 possible

,

the system was extended to the tntire set of in-
tegers, 0, 11,42, 43, .. Next, in order to make it possible
to divide any number by any nonzero number, rationak.pumbers
like -1/2, -2/3, -157/321, and 4/2 were invented. This did not
bring you to the end of the story, for, in order that every
positive number should have a square root, a cube root, a log-
arithm, etc., it was necessary to,invent still more numbers:
the Infinite decimals or real numbers, such as 1.4142....,
3.1415928..., and 0.131317:77.ii=ialy, in order that negative
numbers should also have square roots, and that such quadratic
equations as

x2 + x + 1 0

should have solutions, it was necessary to invent complex numbers
like 3 + 2i, 1 +WI, etc.

Whenever there has seemed to be a good reason to do so,
new sets of "numbers" have been invented. For instance, in in-
venting complex quantities, we began not with the quantities
themselves but with a purpose: to find a system of numbers each
of which has a square root. When one such invention has been
made, it is not hard to realize that there is no reason to stop
inventing.

It is easy to invent things that do not work, but hard
to invent things that do work--easy to invent things that are
useless, but hard to ;invent things that are useful. The same
is true of the invention of new kinds of numbers. The hard thing
is to invent useful kinds of numbers, and kinds of numbers
"that work". Neve.theless, several more or less successful new
kinds of numbers have been invented by mathematicians. At this
time, you are going to study one of the most sucessful of these
new kinds of numbers: the matrices.

Matrices are useful in almost every branch of science
and engineering. A great number of the operations performed by
the giant "electronic brains" are computed with matrices. Many
problems in statistics are expressed in terms of matrices.
Matrices come up in the mathematical problemsof economics. 'They
are extremely important in the study of atomic physics; indeed,
atomic physicists express almost all their problems in terms of
matrices, and it would not be an exageration to say that the
algebra of matrices is the language of atomic physics. Many
other kinds of algebra, such as complex-number algebra and
vector algebra, can be explained very easily in terms of matrices.
So, in studying matrices, you will be studying one of the newest
and most important, as well as one of the most interesting
branches of mathematics.



Now let's take a look at a few simple examples.

Many a baseball fan, when he first opens the newspaper,

refers to a tabulation similar to the following:

G AB R H

Aaron i.68 280 52 109
Williams 52 194 29 60
Mantle 60 228 51 70
Lopez 63 241 38 72

If he is a Mantle fan, he looks at the entry in the third row and
fourth column of numbers in order to learn hew many hits Mantle
has thus far obtained during the season.

You will note that we have said "row" in speaking of a
horizontal array, and "column" in speaking of a vertical array.

Thus the third row is

60 28 51 70,

and the fourth column is

109

60

70

72

An assembler of TV sets might have before him a table of

the following sort:

Model A Model B Model C

Number of tubes 13 18 20
No. of speakers 2 3 4

This table indicates the number of tubes and the number of speakers
used in aesembling a set of each model.

Omitting the row and column headings, let us focus our at-
tention on the arrays of numbers in the last two examples:

68 280 52 109
52 194 29 60 13 18 20
60 228 51 70 2 3 4
63 241 38 72

Such arrays of entries are called mateea (singular:



matrix). Thus a matrix is a rectangular array of entries appearing
in rows and columns. Actually, the entries may be complex numbers,
functions, and in appropriate circumstances even matrices them-
selves; however, with a few exceptions that will be clearly
indicated, we shall confine our attention to the real numbers
with which we are already familiar.

Some examples of matrices

/

ces are the following:

1 -1 3.1 1 1 0
to

-2

You

[112 1/4 1/3

-2

(I)

You will note here how square brackets( are used in the math-
ematical designation of matrices.

great advantage of this notation is the fact that you
can use it in handling large sets of numbers as single entities,
thus simplifying the statement of complicated relationships.

The order of a matrix is g..ven by stating first the number
of rows and then the number of columns in the matrix. Thus the
oreders of the matrices in the foregoing examples (1) are re-
spectively 2x3 (read "2 by 3"), 2x2, 4x1, lx3. Generally a
matrix that has m rows and n columns is called an m x n
(read "m by n") matrix, or a matrix of order m x n.

If the number of rows is the same as the number of col-
umns, then the matrix is square. Thus, given two linear equations
in two unknowns.

2x + 3y = 7

x 2y = 0

you observe that the coefficients of x and y constitute a
square matrix:

CI

When speaking of a square matrix (n x n), its order is often re-
ferred to as n rather than n x n. For example, the 2x2 matrix

C3 4

is a square matrix of order 2, and the 3x3 matrix



Now let's take a look at a few simple examples.

Many a baseball fan, when he first opens the newspaper,

refers to a tabulation similar to the following:

AB R H

Aaron A8 280 52 109

Williams 52 194 29 60

Mantle 60 228 51 70

Lopez 63 241 38 72

If he is a Mantle fan, he looks at the entry in the third row and

fourth column of numbers in order to learn hew many hits Mantle

has thus far obtained during the season.

Yoti,will note that we have said "row" in speaking of a

horizontal array, and "column" in speaking of a vertical array.

Thus the third row is .

60 228 51 70,

and the fourth column is

109

60

70

72

An assembler of TV sets might have before him a table of

the following sort:

Model A Model B Model C

Number of tubes 13 18 20

No. of speakers 2 3 4

This table indicates the number of tubes and the number of speakers

used in assembling a set of each model.

Omitting the row and column headings, let us focus our at-

tention on the arrays of numbers in the last two examples:

68
52
60
63

280
194
228
241

52
29
51
38

109
60
70
72

13
2

l3
3 4

Such arrays of entries are called matrices (singular:



matrik$. Thus a matrix is a rectangular array of entries appearing
in rows and columns. Actually, the entries may be complex numbers,
functions, and in appropriate circumstances even matrices thew.
selves; however, with a few exceptions that will be clearly
indicated, we shall confine our attention to the real numbers
with which we are already familiar.

Some examples of matrices are the following:

Li 3 41 [0 11 2 11/2 1/4 1/ (1)
1 0 -1 1 3.1 1

-2

You will note here how square bracketsir, are used in the math-
ematical designation of matrices.

A great advantage of this notation is the fact that you
can use it in handling large sets of numbers as single entities,
thus simplifying the statement of complicated relationships.

The order of a matrix is given by stating first the number
of rows and then the number of columns in the matrix. Thus the
oreders of the matrices in the foregoing examples (1) are re-
spectively 2x3 (read "2 by 3"), 2x2, 4x1, 1x3. Generally a
matrix that has m rows and n columns is called an a x
(read "m by n") matrix, or a matrix of order m x n.

If the number of rows is the same as the number of col-
umns, then the matrix is square. Thus, given two linear equations
in two unknowns.

2x + 3y 7

x 2y 0

you observe that the coefficients of x and y constitute a
square matrix:

_g
When speaking of a square matrix (n x n), its ordarld_often. re.
faired to as n rather than n x n. For example, the /2x2. matrix

33

is a square matrix of order 2, and the 3x3 matrix



rl 2 3,1
4 -5 6
7 8 -9

is a square matrix of order 3.

If the number of rows is 1, as in the fourth examplein (1), above, the matrix is sometimes called a row miarix or anog vector. For example in terms of rectangular apoint liii plane might be designated by the row matrix 2

or a point in space by the row matrix e 3 -1) .

Similarly, a c_ olumn matrix or column vector is a matrix
having just one column.

Read in your textbook'at the top of page 544 about a

"transpose."



Data Brief 1 2

Thus far, we have defined and studied the addition and
subtratinn of matrices and the multiplication of a matrix by a

number. We still have not defined the product of two matrices.
Since the formal definition is somewhat camplicated and may at
first seem odd, let us look at a simple practical problem that
will lead us to operate with two matrices in the way that we shall
ultimately call multiplication.

In a previous section, the number of tubes and the number
of speakers used in assembling TV sets of three different models
were specified by a table:

Model A Model B Model C

Number of tubes 13 18 20
Number of speakers 2 3 4

This array will be called the parts-per-set matrix.

Suppose orders were received in January for 12 sets of
model A, 24 sets of model B, and 12 sets-of model C; and in
February for 6 sets of model A, 12 of model B, and 9 of model C.
We can arrange the information in the form of a matrix:

January February

Model A 12 6
Model B 24 12
*del C 12 9

This will be called the sets-per-month matrix.

To determine the number of tubes and speakers required in
each of the months for these orders, it is clear that we must use
both sets of information. For instance, to compute the number
of tubes needed in January, we multiply each entry in the 1st row
of the parts-per-set matrix by the corresponding entry in the
1st column of the sets-per-month matrix , and then add the three
products. Thus the number of tubes required in January is

13(12) + 18(24) + 20(12) = 828

To compute the number of speakers needed in January, we multiply
each entry in the 2nd row of the parts-per-set matrix by the cor-
responding entry in the 1st column of the sets-per-month matrix
and then add the products. Thus the number of speakers for
January is

2(12) + 3(24) 4(12) = 144

For February, first we multiply the entries from the 1st row of
the parts-per-set matrix by the corresponding entries from the
2nd column of the sets-per-month matrix and add to determine the
number of tubes; secondly, we multiply the entries from the 2nd
row of the parts-per-set matrix by the corresponding entries
from the 2nd column of the sets-per-month matrix and add to deter-



mine the number of speakers. Thus the number of tubes and speakers
for February are, respectively,

13(6) + 18(12) + 20(9) = 474

and

2(6) + 3(12) + 4(9) - 84

We can arrange the four sums in an array, which we shall
call the parts-per-month matrix:

January February

Number of tubes 828 474

Number of speakers 144 84

Can we now represent our "operation" in equation form? res.

12 6
LI13 18 2!]f 828 47!

2 3 4 24 12 144 84
)

12 9

We havetmultiplied' the parts-per-set matrix by the set-per-month
matrix to get what should be expected, the parts-per-month matrix!

Note that, in Equation (1), 828 equals the sum of the prod-
ucts of the entries in the 1st row of the left-hand factor by the
corresponding entries in the first column of the right-hand factor.
Likewise, 474 equals the sum of the products of the entries in the
1st row of the left-hand factor by the corresponding entries in
the 2nd colimn of the right-hand factor, and so on. Consider the
"product" mtrix

[1:828 479
144 84

in the symbolic form,

ra11

21 a22

The subscripts indicate the row and column in .'.which the entry
appears; they also indicate -ttff-'2"-bvi. and column of the two factor
matrices that are combined to get that entry. Thus the entry a21
in the 2nd row and 1st column is found by adding the products
formed when the entries in the 2nd row of the left-hand factor are
multiplied by the corresponding entries in the 1st column of the
right-hand factor. The most concise description of the process
is: "Multiply row by column."

The description, "Mul i 1 row by_column," of the pattern
in the foregoing simple pract ca pro em serves as our guide in



establishing the general rule for the- multiplication of two matices.

Very simply the rule is to multiply entries of a row by corres-

ponding entries of a column and then add the products.' Thus, given

two matrices A and B, to find the entry in the i-th row and j-th

column of the Product matrix AB, multiply each entry in the i-th

row of the left-hand factor A by the corresponding entry in the

j-th column of the right-hand factor B, and then add all the re-

sulting terms. Since there must be an entry in each row of the

left-hand factor to match with each entry in a column of the right-

hand factor, aid conversely, it follows that the product is not

defined unless the number of columns in the left-hand factor is

equal to the number of rows in the right-hand factor. When the

number of columns in the left-hand factor equals the number of

rows in the right-hand factor, the matrices are conformable for-

multiplication.

A diagram can aid understanding; see Figure 1-1.

IfW". a-ilI

Figure 1-1. Matrices A and B that are conformable for

multiplication. The-number of columns of A must be

equal to the number of rows of B. Then the product AB

has the same number of rows as A and the same number

of columns as B.

An entry in the product AB is found by multiplying each of

the p entries in a row of A by the corresponding one of the p

entries in the column of B and taking the sum; see Figure 1-2.
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Figure 1-2. Determination of an entry in the product
AB of matrices A and B that are conformable for mul-

tiplication.

Thus, for the matrices

2

A= 4 5 6 B=

7 8 9

to form the product AB, we compute as follows:

7 S



Diagram of matrix multiplication

cu + dw

141W
au + bw av + bx

t cu + dw ev + dx
.

. 6 6



Data Brief # 3

You may be wondering i there is an identity el-
ement for the multiplication of matrices, namely a
matrix that plays the same role as the number 1
in the multiplication of real numbers. (For all rcer
numbers a, lxa = a axi.) nere is such a matrix, cal-
led a unit matrix, or the identit matrix for multi-
plication, and denoted by t e sym orr--The matrix 12,
namely,

12 = ,

o

1

is called the unit matrix of order 2. The matrix

13 10 1 0
0 0 1

1 0

is called the unit matrix of order 3. In general, the
unit matrix of order n is the square matrix

E3i4nxn
such that eij = 1 for all i=j and eij 0 for all

# j (i = 102,...,n; j-- 1,2,...1n). In general the
theorem for the identity matrix states that

IA = A -AI.

For example,

3 4

1 i r3
5 6 L0 1 5 6

and

[61

0 1

0 0
1[1 [1, !I

0 3 4 = 3 4
1 5 6 5 6



We now turn our attention to the problem of matrix div-
ision. (Instead of dividing by a number, Z, we will
multiply by its reciprocal, 1/Z.) This problem arises
when we seek to solve a matrix equation of the fOrm

AX = C.
Let's look at a parallel equation concerning real numbers,

ax = c.
Each non-zero number a has a reciprocal 1/a, which is

often designated a-1. Its defining property is .aa-1 = 1.
Since multiplication of real numbers is commutative, it

follows that a-1a = 1. Hence if a is a non-zero number,
then there is a number b, called the multiplicative in-
verse of a, such that

ab = 1: ba (b=a-1) .

Given an equation ax = c, where a j 0, the multiplicative
inverse b enables us to find a solution of x; thus,

b(ax) = bc
(ba )x = bc

lx = bc
x = bc.

Now our question concerning division by matrices can be
put in another way. If AE M, is there a BEM for which
the equation

AB = I = BA
is satisfied? We shall embloy the more suggestive nota-

tion A-1 for the inverse, so that our question can be

restated: Is these an element A-1 M for which the
equation

AA-1 = I = A-1A
is satisfied? . . **7

From the fact that there is a multiplicative inverse
for every real number except zero, you might wrongly infer
a parallel conclusion for matrices.

Now let us try to find the inverse of the matrix
designated A, where

01
A=

and try to solve the equation AX = I.
If we let

41r s
then we find that

AX = [I er0 O r s 00
Hence, no matter what entries we take for X, we cannot have

AX = I
since the entry in the lower right-hand corner of AX is
zero, and the entry in the lower right- hand - corner of I is 1.

At this point you might be thinking that n matrix



has an inverse. But, note that PI = I =, 11. This

means that I is its own inverse, just L.; 1 is its

own inverse among the real numbers.
Also, note that

[1/2 0:41 1_12 11/2
0 1/2 0 2 0 1 0 2 0 1/2

Thus the matrix

has the inverse

A =12 61
0 2

A-1 =
I/2 0

0 1/21

Consequently, 'ne equation AX = B may be solved by the
use of an inverse matrix in the case illustrated below.

12

x =
0 2 3 4J

Now multiply both sides of the equation by A-1.

1/2 0 2, 0 1/2 3 4
410

[41. 6.1X = 11/2
0 1 3/2 2

X =
3/2 2



Data Brief # 5

It is the purpose now to develop a general method of

determining the inverse of a 2 x 2 matrix. Instead of

having specific numbers for entries, we let

A a
c d

The inverse will be represented by B, where

B =
[13

r s

If AB = I, then

[a rp q + br aq + bSI

c d Lr s cp + dr cq + ds 0 1

This matrix equation may be written as four equations,

ap + br = 1 (1) 'aq + bs = 0 (3)

cp + dr = 0 (2) cq + ds 1 (4)

Since we wish to find values for p, q, r, s, in terms of

the real numbers a, b, c, and d, we multiply Equation (1)

by d, Equation (2) by b, and then subtract. We obtain

adp - bcp = d

(ad - bc)p = d

Repeating this process, using appropriate pais of equations,

we obtain

(ad - bc)q = -b, (ad - bc)r = -c, (ad - bc)s = a

Should it happen that ad - bc = 0, then it follows

from the four equations, above, that a=b=c=d= 0,
so that A = 0. But the zero matirx has no inverse, just

as 0 has no inverse in regular algebra. In the beginning

of this section we assumed that A did have an inverse, Bf

hence if ad bc = 0 we have contradiction of this

assumption. In other words, if A has an inverse, then

ad - bc 0.
Temporarily, let us denote the number ad - bc by h.

Now if h 0 we may write

or

p = d/h, q = -b/h, r = -c/h, s = a/h

Substituti.ng these values appropriately in B, we obtain



B=
[d/h -b/1

= 1/h
d

c/h a/h [7c a

In order to show that this matrix is the inverse of A,

we check

AB =
a

c d

d
i 71

-c
h

-b

a
h

ad-bc -ab+ab

0cd-cd

h

-bc+ad
h h

By the same procedure it can be shown that BA = I. The
fact that this relationship follows from the relationship
AB = I is quite significant. While the definition ofthe
inverse demands the existance and eccality of what are
called left and right inverses, we have showb that for
2 x 2 matrices the existance of one implies the existance
of one implies the existance of the other and that if they
exist, then they are the same. Since the multiplication of
matrices is not generally commutative, you might have ex-
pected othe rwise.

Formally the theorm for matrix inverses states that,

If and only if the matrix
c d

has an inverse, then

ad - bc O.

If = X then 6(X) = ad - be and is called the
c d

determinnnt of X.



Data Brief # 6

If S = xi + x2 + xp , It may also be

p

written as S = xj

For example, g j2 12 22 32
5
2

= 55

j=1

The formula for the sum of the fire' - positive integers is,

1 + 2 + 3 + . . . + p 13(15
2

1) It can also be

p
expressed as g j = 13(32+ 1)

j=1

In this notation, the sum a311314+a32b24 a3pbp4

:-
is expressed as ZEL, a

3J J
D.
4j=1

You might recognize this as the element in the third row
and fourth column of the matrix AB,

(Activity # 6 is a lecture)
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...

Activity # 1

P. 546
In your text book, do all odd problems 1-21, and 24, 26.

Activity # 2

P. 551
In your text book, written exercises, # 1,3,5,7,9

Multiply the two matrices below.

WI.

3

3
-1 1

1 -1 1
2 -1

Prove that in matrix algebra, multiplication is not com-

mutative.

Set the

Set up the proof that multiplication is assodiative



Activity 4 3

Find x such that when A is multiplied times B the product

is the identity matrix

1.

2.

3.3

4.4

5.

That is AB

A =
1 3I!

4

A .
2 31

2 2
A =

2 3

3 4
A =

4 5

2

0

1

= I

B

0 7

1 0

2 1

=

B

B

B

x -5

[-1 2

3 x
=

[-2 3

x -1
=
[71 1

5 -4
=

{.-4 x

-x -14x

0 1

x 4x

7x7

0

-2x

.1



ActIvILy

1. Which of the following pairs of elements are inverses

of one another?

(a) 139. 01 and pi 1

(b) [12 --31 and

[

(c)
r1

and
-6

-1
6

(d)

[8
and

(e) and d -b
-c a

:1

2. The matrices
1 1

3

and
[. 1

are inverses of
2

one another. Are their squares also inverses? Their

transposes?



1. For each of the following matrices, determine whether the inverse
exists; if it does exist, find it.

a) [36 I b) [1 c) [3 / d) [4. 1
1 9 21 1 1

e) [-2 1 f) r 1 g) [ 2 -61
3 4 0 -7 -1 3

2. Determine those values of x for which the matrix has no inverse.

x2
a) :3

x+2 0 x2 x-1

x
b) c) 4

x x-3]
d)

3

In each exercise Ising the matrices below, show that;
cr(AB) = 6(A) 5(B) and also that

50-1)= 6+Eir
2 1

[
3. A =

4
B-=

4 3

2

A =
[t2 1 0

1
Bif

X x21 -
5. A =

x3 xd B 3 4

Using matrix A in exercise 3 above show that 6(tA) = t26(A)

7. If A = and B =
2 11 ,,

5Now TH4T
x -3. [-5 -2

6(B-1AB) = 5(A).

t
8. If X is the transpose of X, and X -

c d
show that

6(X ) = 6(Xt ) and conclude that (AAt ) O.
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Information Sources:

Read Data Brief # 1 "Set Notation"

Read Data Brief # 2 "Functions"

Read Data Brief # 3 "Graphing a function"

Read Data Brief # 4 "Constant and Linear Functions"

Read Data Brief # 5 "The Absolute-value Function"

Read Data Brief # 6 "Inversion"



Data Brief * 1

A set is a collection of objects - not necessarily

material objects - described in such a way that there

is no doubt as to whether a particular object does or

does not belong to the set.

Usually capital letters are used to designate sets.

A set may be described by listing its elements with-

in braces, as
. .

A 41, 2, 3, 43

or by using the set-builder notation, as

A Ix: x is a positive integer and x1:53.

(this should be read "A is the set of all x such that

x is a positive integer and x is less than 5.")

The Greek letter (epsilon) is used to indicate

that an element belongs to a given set, as 24EA. (Read

this,"2 is an element of the set A" or "2 belongs to the

set A.")

The intersection of two sets A and B, written Af)B,

is the set of all elements that belong to A and also be-

long to B: AFB = Ex: x45A and xEB).

The union of two sets A and B, written AUB,

is the set of all elements that belong to A or to B

or to both: AUB =[x: xfrA or xi:B.?.



Domain: The set whose elements may serve as replacements for a

variable, x.

Range: The values of f(x) when you pick a domain for x.

For a-set of ordered pairs, {(a,b), (3,6), OM, (x,y) },

the set of all the first elements is the domain; a, 3, 4, x.

The set of all the second elements is the range; b, 6, @, y.

In the open sentence, y = f(x) = x, does each element, of the

domain take you into one and only one element in the range?

1

2

3

x

)-

If the domain of this function is all the real numbers, then

the range is also all the real numbers.

Data Brief # 2

2

3

We frequently hear people say, "One function of the Police

Department is to prevent crime," or "Seve4:al of my friends at-

tended a social function last night," or "My car failed to function

when I tried to use it." In mathematics we use the word "function"

somewhat differently than we do in ordinary canversation; as you

have probably learned in your previous study, we use it to denote

a certain kind of association or dorrespondence between the

members of two sets.
For instance, we note such an association between the number

of feet a moving object travels and the difference in clock read-

ings at two separate points in its journey; between the price of

eggs and the cost of making a cake; between the length of a

steel beam and its temperature. Additional examples of such as-

sociations accour in geometry, where, for example, we have the

area of the circumference of a circle associated with the length

of its radius.



In all of these examples, regardless of their nature, there
seems to be the natural idea of a direct connection of the elements
of one set to those of another; the set of distances to the set
of times, the set of lengths to the set of thermometer readings,
etc. It seems natural, therefore, to abstract from these various
cases this idea of association or correspondence and examine
it more closely.

Let us start with some very simple examples. Supp6se we take
the numbers 1, 2, 3, and 4, and with, each of them associate
the number twice as large: with 1 we associate 2, with 2

we associate 4, with 3 we associate 6, and with 4 we as-
sociate R. An association such as this is called a function,
and the set {1, 2, 3, 4) with which we started is called the
domain of the function. We can represent this association more
briefly if we use arrows instead of words: 1-42, 2-04, 3-46,
4---8.T There are, of course, many other functions with the same
domain; for example, 1-4.2, 2-41, 3-42, 4-4.5.

It happens that these two examples deal with numbers, but
there are many functions which do not. A map,, for instance,
associates each point on some bit of terrain with a point on a
piece of paper; in this case, the domain of the function is a
geographical region. We can, indeed, generalize this last ex-
ample, and think of any function as a mapping; thus, our first
two examples map numbers into numbers, and our third maps points
into points.

What are the essential features of each of these examples?
First, we are given a set, the domain. Second, we are given a
rule of some kind which associates an object of some sort with
each element of the domain, and, third, we are given some idea
of where to find this associated object. Thus, in the first ex-
ample above, we know that if we start with a set of real numbers,
and double each, the place to look for the result is in the set
of all real numbers. To take still another example, if the domain
of a function is the set of all real numbers, and the rule is
"take the square root," then the set in which we must look for
the result is the sdt of complex numbers. We summarize this dis-
cussion in the following definition:

Definition 1-1. If with each element of a set A there is
associated in some way exactly one element of a set B, then
this association is called a function from A to B.

It is common practice to represent a function by the letter
!If" (other letters such as "g" and "h" will also be used.) It
x is an element of the domain of a function f, thenAhe object
which f associates with x is denoted f(x) (read "the value
of f at x" or simply "f at x" or "f of x"); f(x) is
called the image of x. Using the arrow notation of our ex-
amples, we can represent this symbolically by

f: x--+f (x)

(read "f takes x into f(x)"). This,notation tells us nothing
about the function f or the element x; it is merely a re-



statement of what "f(x)" means.

The set A mentioned in Definition 1-1 is, as has been
stated, the domain of the function. The set of all objects
onto which the function maps the element of A is called the
range of the function; in set notation,

Range of f = (f(x): x e A }.

The range may be the entire set B mentioned in the definition,
or may be only a part thereof, but in either case it is in-
cluded in B.

It is often helpful to illustrate a function as a mapping,
showing the elements of the domain and the range as points and
the function as a set of arrows from the points that represent
elements of the domain to the points that represent elements of
the range, as in figure 1 -la. Note that, as a consequence of
Definition 1-1,

Figure 1 -la. A function as a mapping.

to each element of the domain there corresponds one and only one
element of the range, If this condition is not met, as in figure
1-1b, then the mapping pictured is net a function. In terms of
the pictures, a mapping is not a function if two arrows start
from one point; whether two arrows go to t:It same point, as in
nire 1 -la, is immaterial in the definitici. This requirement,
that each element of the domain be mapped onto one and only one
element of the range,-may bexaxilotxxxy seem arbitrary, but it
turns out, in practice to be extrcnaly convenient.

Figure 1 -lb. This mapping is NOT a fuAction.



Since most of the functions we will be dealing with will
have domains and ranges in the set of real numbers, it is con-
venient to represent the domain by a set of points on a number
line and the range as a set of points on another number, line,

as in figure 1-1d.

Specifically, consider the function f, discussed earlier,
which takes each element of the set 1, 2, 3, 4 into the number
twice as great. The range of this function is 2, 4, 6, 8 and
f maps its domain onto its range as shown in Figure 1-1d. We
note that, in this case, the image of the element x of the domain

of f is the element 2x; hence we may write, in this instance,
'f(x) = 2x, amd f is completely specified by the notation

f: x--2x, x = 1, 2, 3, 4.

In this case, the way in which f maps its domain. onto its
range is completely specified by the formula f(x) = 2x. Most
of the functions which we shall consider can similarly be de-
scribed by appropriate formulas. If, for example, f is the
function that takei each number into its square, then it takes
2 into 4 (that is,-f(2) = 4), it takes -3 into 9 (that is
f(-3) = 9), and in general, it takes any real number x into
x2. Hence, for this function, f(x) =-xz, we may write f: x--+x2.
The formula f(x) = x2 defines this function f, and to find the
image of any element of the domain, we can merely substitute in
this formula; thus, if 3 is a real number' then f(a-3) =
(a-3)2 = a2 - 6a + 9. Similarly, if we know that a function f

has f(x) = 2x -3 for all x c R (we use R to represent the
set of real numbers) then we can renresent f in our mapping
notation as f: x 2x - 3, and to x in the expression 2x - 3

notation as f: - 3, and to find the image of any real
number we need only substitute it for x in the expression
2x - 3; thus f(5) = 2(5) -3 = 7, f(a) = 2a - 3, and if k + 2
is a real number, then

f(k + 2) = 2(k + 2) - 3 = 2k 1.

Figure 1-1d. f: 2x, x = 1, 2, 3, 4



Strictly speaking, a function is not completely described
unless its domain is specified. In dealing with a formula,
however, it is a common and convenient practice to assume, if

no other information is given, that the domain includes all real
numbers that yield real numbers when substituted in the formula.
For example, if nothing further is said, in the function
f: x--1/x, the domain is assumed to be the set of all real

numbers that except 0; this exception is made because 1/0
is not a real number. Similarly, if f is a function such

that f(x) =14.7;;, we assume, in the absence of other in-
.

formation, that the domain is {x: -1 < x < 1}, that is, the set
of all real numbers from -1 to +1 inclusive, since only. these
real numbers will give us real square roots in the expression

for f(x), When a function is used to describe a physical
situation, the domain is understood to include only those numbers
that are physically realistic. Thus if we are describing the
volume of a balloon in terms of the length of its radius,
f: r--V, the domain would include only positive numbers.

Another way of looking at a function, which may help you to
understand this section, is to think of it as a machine that
processes elements of its domain to produce elements of its
range. The machine has an input and an output; if an element
x of its domain is fed on a tape into the machine, the element
f(x) of the range will appear as the output, as indicated in
Figure 1 -le.

x

Figure 1-le
A representation of a function as a machine.'

A machine can only be set to perform a predetermined task.
It cannot exercise judgement, make decisions, or modify its in-

structions. A function machine f must be set so that any
particular input x always results in the same output f(x);
if the element x is not in the domain of f, the machine will
jam or refuse to perform. Some machines - notably computing
machines - - actually do work in almost exactly Vhis way.



Data Brief If 3

A graph is a set of points. If the set consists of
all points whose coordinates (x,y) satisfy an equation in xand y, then the set is said to be the graph of that equation.
If there is a function f such that, for each point (x,y) of
the graph, and for no other points, we have y gs f(x), then
we say that the graph is the graph of the function f. The
graph is perhaps the most intuitively illuminating represen-tation of a function; it conveys at a glance much important
information about the function. The function (when
there is no danger of confusion, we sometimes omit the name
of a function, as "f" in f:x--x2) has the parabolic graph
shown in Figure 1-2a. We can look at the parabola and get a
clear intuitive idea of what the function is doingto the
elements of its domain. We can moreover, usually infer fromthe graph any limitations on the domain and the range. Thus,

y

x

Figure 1-2a.
Graph of the function f:x--+x2

it is clear from Figure 1-2a, that the range of, the function
there graphed in'1udes only non-negative numbers, and in the

function f:x--4425777J graphed in Figure l-2b, the domain{x: -5 < x < 5) and range {y: 0 < y < 5} are easily determined,
as shown by the heavy segments on the x-axis and y-axis re-spectively.

(0,5)

Domain

Figure 1-2b.
Graph of the function fix--.45-57:0

$



Another illustration: the function
f: x--4x/2, 2< x< 6

has domain A = (x: 2 < x i 6) and range B = (f(x) : 1 < f(x) s.

In this case we have used open dots at 2 on the x-axis and

at 1 on the y-axis to indicate that these numbers are not

elements of the domain and range respectively. See Figure 1-2c.

y

÷ 3
raagel

x

2 6

4-domain -4

Figure 1-2c.
Graph of the function f: x--4x/2, 2 < x s 6.

As might be expected, not every possible graph is the

graph of a function. In particular, Definition 1-1 requires

that a function map each element of its domain onto only one

element of its range. In the language of the graphs, this

says that only one value of y can correspond to any value of

x. if, for example, we look at the graph of the equation

x2 + y2 = 25, shown in Figure 1-2d, we can see that there are

y

(-5.0)

1Fiqurej=2d.
graph of the set S = ((x,y) : x2 + y2 = 25).

many instances in which one value of x is associated with

two values of y, contrary to the definition of function.

To give a specific example, if x = 3, we have both y 4 and

y = -4; each of the points (3,4) and (3,-4) is on the graph.

Hence this is not the graph of a function. We can, however,

break it into two pieces, the graph of y =1/277-7 and the

graph of y = -1/2 - x2 (ThiS makes the points (-5,0) and

(5,0) do double duty), each of which is the graph of a function.



Figure 1-2e
Graph of y = /E777-

Figure 1-2f.
Graph of y = -6T-77)71

If, in the xy-plane, we imagine all possible lines
which are parallel to the y-axis, and if any of these lines
cuts the graph in more than one point, then the graph defines
a relation that is not a function. Thus, in figure 1-2g,
(a) depicts a function, (b) depicts a function, but (c)
does not depict a function.

y y

x

1a) (h) (c)



Data Brief # 4

We have intooduced the general idea of function, which
is a particular kind of an association of elements of one set
with elements of another. We have also interpreted this idea
graphically for functions which map real numbers into real
numbers. In the previous sections general ideas were presented
and specific ideas were only used for examples. In this section
some specific functions will be studied.

Let us think of a man walking north along a long straight
road at the uniform rate of 2 miles per hour. At some par-
ticular time, say time t = 0, this man passed the milepost
located one mile north of baseline road. An hour befor this
which we shall call time t = -1, he passed the milepost lo-
cated one mile south of Baseline Road. An hour after time
t = 0, at time t = 1, he passed the milepost located three
miles north of Baseline Road. In order to form a convenient
mathematical picture of man's progress, let us consider miles
north of Baseline Road as positive and miles south of as
negative. Thus the man passed milepost -1 at time t = -1,
milepost 1 at time t = 0, and milepost 3 at time t-= 1.
Using an ordinary set of coordinate axes let us plot his
position, as indicated by the mileposts, ver .3us time in hours.
This gives us the graph shown in Figure 1-3a.

In t hours the man travels 2t miles. Since he is
already at milepost 1 at time t = 0, he must be at
milepost 2t + 1 at time t. This pairing of numbers is an
example of a linear function.

Now let us plot the man's speed versus time. For all
values of t during the time he is walking his speed is 2
miles

2

er hour. This is graphed in Figure 1-3b.
di tance in
mimes

-11 2 3 time in hours

Figure 1-3a

Graph of the function

f: = 2t + 1

graph of the function
g: = 2

speed

1

time
-1 14.54 D

Figure -3b



When t = -1 his speed is 2, when t = 0 his speed is 2,

etc.; with each number t we associate the number 2. This

mapping, in which the range contains only the one number 2,

is an example of a constant function.

DEFINITION. If with each real number x we associate

one fixed number c, then the resulting mapping,

f: x --oc,

is called a constant function.

The discussion of constant function can be disposed of

in a few lines. The function we just mentioned, for example,

is the constant function g: t--42. The graph of any constant

function is a line parallel to the horizontal x-axis.

Constant functions are very simple, but they occur over and

over again in mathematics and science and are really quite

important. A well lnown example from physics is the.pagni-

tude of the attraction of gravity, which is usually taken to

be constant over the surface of the earth-- though, in this

age, we must recognize the fadt that the attraction of gravity

varies greatly throughout space.

The functions we examine next also occur over and over

again in mathematics and science and are considerably more

interesting than the constant functions. These are the linear

Functions. Since you have worked with these functions before,

we can begin at once with a formal definition.

DEFINITION. A function f defined on the set of all

real numbers is called a linear function if there exist real

numbers m and b, with m'F-U, such that

f(x) = mx + b.

Example 1. The function f: x--42x + 1 is a linear

function. Here f(0) = 1, f(1) = 3, f(-1) = -1. This function

was described earlier In this section in terms of t, with

f(t) = 2t + 1. Its graph can be found in Figure 1-3a.

we note that the graph in Figure 1-3a appears to be a

straight line. The graphs of all linear functions are

straight lines.

An important property of any straight line segment is

its slope, defined as follows.
DEFINITION. The slope of the line segment from the

point p(x1, y1) to the point Q(x2, y2) is the number

y2 Y1
x2 - xi

provided x
1

x2. If x
1
= x2, the slope is not defined.



Note that
Y2

xl - x2

Y2 1,1

x2 - xl

So that it is immaterial which of the two points P or Q we

take first.

What about the geometric meaning of the slope of a
segment? Suppose, for the sake of definiteness, we consider
the segment joining P(1,2) and Q(3,8). By our definition, the
slope of this segment is 3, mince (8 - 2)/(3 - 1) = 3. Note
that this is the iertical distance from P to Q divided by the
horizontal distance from P to Q, or, in more vivid language,
the rise over run.

POI )

Q(310

RiS C ce pri

. II
Rum (cum-r5)

Lot us think of the segment PQ as running from left to
right, wo that the run is positive. If the segment Hoes, then
the "rise" is positive and the slppe is positive. Wthe
segment falls than the "rise" is negative and the slope is
therefore negative. The steeper the segment, the larger the
absolute value of the slope,

It has been stated that slope is not defined if xl = x2.
In this case the segment lies on a line parallel to the
y-axis. It is important to distinguish this situation from
the case yl = y2 in which the line has a slope and it is 0.

Note that lines having zero slope, that is lines
parallel to the x-axis, are graphs of constant functions. On
the other hand, lines for which no slope is defined, that is
lines parallel to the y-axi#, cannot be graphs of any functions
because, with one value of x, the graph associates more than one
value--in fact, all real values.



If a line is the graph of a linear function f: x MX + b,
then for any xl and x2, x1 # x2, the slope of the segment
joining
joining(ei F(gii)400

(2
filis by definition

)< )(/
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A function of importance in many branches of mathematics is

the absolute-value function, t: x--1.1x1 for all x C R. The
absolute value of a number describes the size, or magnitude, of

the number, without regard to its sign; thus, for example

.121 IN1-21 s 2 (read 121" as "the absolute value of 2"). A common
definition of Ix' is

Definition

x, if x Z 0

lxi
-x, if x < 0.



I
If a line is the graph of a linear function f: x mx + b,

then for any x1 and x2, x1 # x2, the slope of the segment
joining
joining()(1 F6(11),,,,,,7)F(i is by definition

F (g) - F0(1)

. 4. . .
, . . .

X 0 - X/
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A function of importance in many branches of Mathematics is

the absolute-value function, f: x---,1x1 for all x E R. The
absolute value of a number describes the size, or magnitude, of
the number, without regard to its sign; thus, for example
121 i. 1-21 Is 2 (read "121" as "the absolute value of 2"). A common
definition of 1x1 is

Definition 1.:2. .

if x I 0

Ix! -

I

I

-x, if x < 0.



IYou should be able to see, from the first definition of this funs-

tion given above, that this graph consists of the origin, the part

of the line y - x that lies in Quadrant I, and the part of the line
. y -x that lies in Quadrant II.

There are two important theorems about absolute values.

Theorem 1-1. For any two real numbers a and. b, lab'

1411.1bl.

Proof: 1111.1b1 - a2 b2 so N/r----(ab)2 labl.

Theorem 1 -2. For any two real numbers a and b,

la + bl S lal + 1bl.

Proof: By Definition 1-6, Theorem 1-2 is equivalent to
1

(It "f7'b 11720
which is equivalent to

a2 b2 a2 /1a + 2ab +b Ka +2 a1 u
7.2

+ b2

and hence to 2ab K2

or
(2)

Now equation (2) is easy to prove. If a and b have oppo-
site signs, then ab < 0 and (2 holds with the < sign; Otherwise,
we have ab .vg 2.

Hence in any case abK4/Prp,
and therefore (1) holds. q,e.d.

Thus, for example, 1(-2) (3)1 - 1-61 - 6 - 2 3 1 -21 131,

1(-2) + (3)1 1 < 5 . 2 + 3 1-21 + 131, and
441

1(.2) ( -3)1 IM 5 2 + 3 m 1-21
...r
...
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Quite frequently in science and in everyday life we encounter

quantities that bear a kind of reciprocal relationship to each

other. With each value of the temperature of the air in an automo-

bile tire, for example, there is associated one and only one value

of the pressure of the air against the walls of the tire. Converse-

ly, with each value of the pressure there is associated one and

only one value of the temperature. Two more examples, numerical

ones, will be found below.

Suppose that f is the function x--.4x + 3 and g is the

function x - 3. Then the effect of f is to increase each

number by 3, and the effect of g is to decrease each number by

3. Hence f and g are reciprocally
related in the sense that

each undoes the effect of the other. If we add 3 to a number and

then subtract 3 from the result we get back to the original number.

In symbols
(gf)(x) = g(f(x)) = g(x + 3) = (x + 3) - 3 = x.

Similarly,
(fg)(x) = f(g(x)) = f(x - 3) = (x - 3) + 3 = x.

As a slightly more complicated example we may take

f: - 3 and g:

Here f says "Take a number, double it, and then subtract 3." To

reverse this, we must add three and then divide by 2. This is the

effect of the function g. In symbols,

(gf)(x) = g(f(x)) = g(2x - 3) m(2x - 3) + 3 x.

(fg)(x) = f(g(x)) = f(42) = 3+-.3 3 al x.

In terms of our
representation of a function as a machine, the

g machine in each of these examples is equivalent to the f machine

running backwards; each machine then undoes what the other does,

and if we hook up the two machines in tandem, every element that

gets through both will come out just the seine as it originally went

in.

Similarly,

We now generalize these twe examples in the following defini-

tion of inverse functions.



Definition 1-8. If f and g are functions so related
that (fg)(x) = x for every element x in the domain of g and
(gr)(y) = y for every element y in the domain of f, then t
and g are said to be inverses of each other. In this case both
f and g are said to have an inverse, and each is said to be an
inverse of the other.

As a further example of the concept of inverse functions let
us examine the functions f: x---*x3 and g: x---4.167 In thii case

(fg)(x) = f(g(x)) = f( 1/i) = ( 16)3 = x
and (gf)(x) = g(f(x)) = g(x3) = i67 = x
for ali x E R.

If a function f takes x into y, that is, if y = f(x),
then an inverse g of f must take y right back into x, that
is, x = g(y). If we make a picture of a function as a mapping,
with an arrow extending from each element of the domain to its
image, as in Figure 1-6a, then to draw a picture of the inverse
function we need merely reverse the arrows, as in Figure 1-6b.

Figure 1-6a. A function. Figure 1-6b. Its inverse.

We can take any mapping, reverse the arrows in this way, and
obtain another mapping. The important question for us, at this point,
is this: If the original mapping is a function, will the reverse map-
ping necessarily be a function also? In other words, given a



function, does there exist another function that precisely reverses
the effect of the given function? We shall see that this is not
always the case.

The definition of a function (Definition 1-1) requires, that

to eech element of the domain there ccrrespcnds exactly one element

of the range; it is perfectly all right for several elements -of
the domain to be mapped onto the same eleMent of the range (the
constant function, for example, maps all of its domain onto one
element), but if even one element of the domain is mapped onto more
than one element of the range, then the mtwing just isn't a func-
tion. In terms of a picture of a function as a mapping (such as

Figures 1-la and 1-1c),- this means that no two arrows may start
from the same point, though any number of them may end at the same
point. But if two or more arrows go t;, one point, as in Figure
1-6c, and if we then reverse the arrows, as in Figure 1-6d, we
will have two or more arrows starting, from that point (as in Figure
1-1b), and the resulting mapping is not a function. Since the word
"inverse" is used to describe only a mapping which is a function,
we can ovntclude that not every function has an inverse.

Figure 1-6c.

8

Figure 1-6d.

A specific example is furnished by the constant function f:

since f(0) u 3 and f(1) 3, an inverse of f would have to map
3 onto both 0 and 1. By definition, no function can do this.



Activity 1 1

For each problem draw a diagram that illustrates the fuhction
as in the example f(x) = x in the text. For each problem the
domain is the set of all real numbers. State by rule or roster

-the range of each function. Then graph each function.

1. f(x) = x + 3

2. f(x) = 2x + 5

3. f(x) = lx1 -1

4. f(x) = 11 - xl

5. f(x) 111 X2 1

6. Why do you think f(x) = 7tis called a constant function?

In your textbook p. 210, 4 25,27,29,3433,35.



Activity $ 2

1. Which of the following 'do not describe- functions, when x,

R?

a) f: - 4 d) r: xiay = x2 r) f:

b) f: x >x3 e) f: y<x g) f:

c) f: -

2. Depict the mapping of a few elements of the domain into elements
of the range for eacn of the Exercises 1(a), lc), and (d) above,
as was done in Figure.1-1d.

3. Specify the domain and range of the following functions, where

x, f(x) E R.

a) f: x>x d) f: x 1

b) e) f:

c) r: x - 4

4. If f: + 1, find

a) t(o)

b) f(-1)

c) f(100).

d) r
5. Given the function f: x > x

2 - 2x + 3, find

a) f(0)

b) r(1)

c) f(a),

d) r(x i)

6. If f(x) find

a) f(4) 0) r(5)

b) f(-5) d) f(a)

If x E: R, given the functions

f: x+x

e) f(a - 1)

f) f(r)

and x2
g : x x

are f and g the came function? Why or why not?

What number or nuntUers have the image 15 under the following

functions?

a) f: x>x2

b) f: 2x_

c) f: x--bA 4T-47-571.



1.

Activity 1 3

Which of the following graphs could represent functions?

(a)
.y

(b)

X

x

(d)

2. Suppose that in (a) above, f: x--* f(x) is the function whose
graph is depicted. Sketch
a) g: b) g: x--+f ( -x)

3. Graph the following functions.
a) f: x--* 2x

b) 0: x-- 1
3) -
x

c) f: x-* y = 4 x and x and y are positive integers.
d) f: x--* -V1777-37§

4, Graph the following functions and indicate the domain and
range of each by heavy lines on the x-axis and y-axis roopec-
tively,

a) f: x-411 2 < y < 3
b) ft 9 i x

TA _4747 snri



1. Find the slope of the

a) f(x) 3x - 7

b) f(x) 6 - 2x

c) 2f(x) 3 « x

d) 3f(x) 4x - 2

Activity t 4

function f if, for all real

2. Find a linear function

a) r(1) - 4

f whose slope

o)' f(3)-

740---f(8)

is -2 and- such that:"..,1m

IN X

3. Find the'iloii oethellnear function f if f(1) 3 .one

a) f(0) 4
b) f(2) 3

0) f(5) 1.1 5

. r(6) "13
4. Find a function whose graph is the line Joining the points

a) P(1, 1), Q(2, 4) - P(1, 3), Q(1, 8)

b) P(-7, 4), Q(-5, 0) d) P(1, 4), Q( -2, 4)

5. Given f: x--4.-3x + 4, find a function whose graph is parallel

to the graph of t and passes through the point

a) P(1, 4) . o) P(1, 5)

b) 'P(-2, 3) P(-3, -4)

6.. If f is a constant function find f(3) if

; a) f(1) w 5

b) f(8) -3

c) f(0) 4

7. Do the points P(1, 3), 4(3, -1), and 8(7, -9) all lie on a sin-

gle line? Prove your assertion:.

8.' The graph of a linear function f gasses through the points

P(100, 25) and 4(101, 39). Find

a) f(100.1)

b) f(100.3)

9. The graph of a linear function f passes-through the points

P(53, 25) and 4(54, -19). Find

a) f(53.3)

b) f(53.8)
10. Find a linear function with graph parallel to the line with

equation 2 3y + 4 0 and passing through the point of inter

section of the lines with equations 2x+ 7y + 1 - 0 and

x - 2y + 8 0.

11. Given the-points A(1, 2), B(5, 3), C(7, 0), and D(3, .1), prove

that ABODI is a parallelogram. .t

12. Find the coordinates of the vertex C of the parallelograakABCD

if AC is a diagonal and the other vertices are the points:

a) A(1, -1), B(3, 4), D(2, 3)1

b) A(0, 5), B(1, -7), D(4, 1)



Activity 1 5

1. a) For what x e R is it true that 4g2 ,., ifi

b) For what x C R is it true *that ,17 ..0

2. a) For what x C R is it true that Ix - 11 x 0, 1?

b) For what x c It is it true that Ix* - 11 .-x. :I- 1?

c) Sketch a graph of fs x ---six 7 11.

d) Sketch a graph of ft x--wiz, - 1. .

3. Solve: II

a) xl 14

b) x + 21 7

c) x . 31 . .]:
4. For what values of x is it 'true that

a) x - 21 < 1
.: ; ,.

b)
x - 51 ) 2

c) x + 41 <0.2
d) 2x - 31 ( 0.04

e) 4x + 51 <0.12
5. Show that x2 k x 1x1 for all x C R.

6. Show that la - bl / lal + 1bl.

7. Show that i(a + b.+ la - b1)..ts equal to the greater of a

and ti. Can you write * similar-expression for the lesser of

a and b?
....

8. Stretch:etch: y 1x1 + lx - 21. (Hints you oust consider,, sopa-
.:'

rately the three possibilities x < ..0, 0 I x < 2, and X k,
..........



Activity 1 6

1. Find an inverse of each of the following functions:
a) - 7 c)
b) + 9

2. Solve each of the following equations for x in terms of y
and coMpare your answers with those of Exercise is
a) y x - 7 c) y . 1/X
b) y 5x + 9

3. Justify the following in terms of composite functions and in-
verse functions: Ask someone to choose a number, but not to
tell you what it is. "Ask the person who has chosen the number
to perform in succession the following operations. (1) To
multiply the number by 5). (ii) To add 6 to the product.
viii) To multiply the sum by 4. (iv) To add 9 to the product.(v) To multiply the sum by 5. Ask to be told the result of
the list operation. If from this product 165 is subtracted,
and then the difference is divided by 100, the quotient will be
the number thought of originally."
(w. W. Rouse Ball).


